DEPARTMENT OF WASTE MANAGEMENT Content of Doctor of Philosophy Programme in Waste Management

COURSE CODE COURSE NAME AND CONTENTS	T	•	С	ECTS	
---	---	---	---	------	--

SKM803	Composting Technologies 3 0 3 8					
	The objective of this course is to examine the principles and practice of modern-day					
	nposting, in-depth. At the end of the course, the students will acquire the					
	cnowledge to analyze the composting process and the necessary skills to design a					
	functioning composting facility that produce an end product meeting the demanded					
	specifications. Firstly, the historical composting practices will be reviewed and					
Purpose	different types of biosolids that can be used in composting process will be discussed.					
and	In the following weeks, currently available composting technologies will be the					
Content	explored and the fundamental principles driving the composting process will be					
	presented, along with the analytical approach to assess the process. In the second part					
	of the course, design and management basics for a composting facility; control					
	methods for odor, bioaerosols, dust emissions from composting plants; and criteria					
	for determination of the maturity and safety of the compost will be taught. Finally,					
	the possible venues for beneficial use of compost will be mentioned.					

SKM839	Industrial Solid Waste Reclamation3038
Purpose and Content	The methods that can be applied for beneficially using industrial solid wastes will be shown. The available tools to determine the possible environmental risks and measures that can be taken to minimize these risks will be taught. Information will be given on how fly ash, bottom ash, waste concrete, slags and similar solid industrial wastes can be valorized applying various recovery and beneficial reuse techniques. The chemical properties of these wastes and what kind of components they will leach in contact with water will be explained. Binding legal regulations, test procedures to be followed and how to evaluate test results will be taught.

SKM836	Fate and Transport of Pollutants in Nature	3	0	3	8
Purpose and Content	Understanding the main processes that determine the fate and transport in nature is of fundamental importance in assessing and mitigating er- risks. In this course, the chemical properties of pollutant compounds conditions in different environments (atmosphere, surface waters, an movements and physical, chemical, and biological transformations of compounds will be examined. Students completing this course will be distribution of pollutants between phases, transport mechanisms such advection, transformations of pollutants such as photolysis, precipita biodegradation, and predicting concentration profiles of pollutants in scenarios.	nvir and d so f th earr n as tior	ronr l hc pil) ese n the dif n, ar	nen ow affe e fusi nd	tal ect the

SKM813	Treatment Methods of Hazardous Wastes	3	0	3	8
Purpose and Content	The aims of this course are : to give some information related to the properties of hazardous wastes, treatment and disposal techniques. So reuse and exchange. Integrated management. Risk assessment; doser relationships and models.	our	ce r	edu	

SKM829	Biosensors	3	0	3	8

1

PHENOSE	The aim of this course are: Introuction of biosensors, working principles, Classification of biosensors, usage areas, use of biosensors in Environmental
Content	Engineering, Use of biosensors in agricultural fields, Use of biosensors in medicine, Types of biosensors and General evaluations about the course topics.

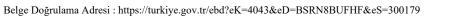
SKM835	Green Design and Production3038					
	It is aimed to transfer the methods of waste generation before pollution by					
	introducing a new point of view as an alternative to the end of pipe treatment which is					
	included in the environmental engineering as the treatment sense. Pollution					
Purpose	prevention and clean production (CP) concepts, CP concept, Comparison of Pollution					
and	Prevention and Pollution Control Approaches, Pollution Prevention and CP methods					
Content	and basic principles, Eco efficiency, International and local legislation on CP, Costs					
	n CP and carbon footprint studies analysis, Life Long Assessment, Clean Production					
	Case Studies in the World					

SKM806	Thermochemical biomass conversion technologies	3	0	3	8
Purpose and Content	The aim of the course is to provide fundamentals of conversion techn products from thermochemical conversion technologies and their usa fundamentals of thermochemical conversion technologies, pyrolysis, processing, combustion, gasification.	ige.	C		rmal

SKM837	Plastic waste management	3	0	3	8
Purpose and Content	The aim of the course is to give knowledge about plastics, to give inf waste plastics, to give information about management of waste plasti Plastics, types of waste plastics, sources of waste plastics, management plastics	cs.			

SKM838	Energy generation from wastes	3	0	3	8
Purpose and Content	The aim of the course is to give knowledge about different processes generation from wastes, to give information about waste types for en to give knowledge about use of energy from wastes. Waste types, energy, processes for energy generation from waste.			<u> </u>	,

SKM 841	Lignocellulosic Bioproducts	3	0	3	8
Purpose and Content	This lesson aims to describe the chemistry of diferent components of biomass (cellulose, hemicellulose, lignin, extractives and ash). Besid industrial applications of lignocellulosic biomass have been compreh described, which includes biorefning for biofuel and biochemical pro- biomedical, cosmeceuticals and pharmaceuticals, bioplastics, multifu- materials and other eco-friendly specialty products. The production a of lignocellulose-derived carbon materials such as activated carbon, nanotubes, carbon nanohorns, etc. have been highlighted. The potent utility of cellulose and lignin-based specialty materials such as cellul bacterial cellulose, epoxides, polyolefns, phenolic resins, bioplastics this lesson. Lignocellulosic feedstocks are gaining increased popular industrial applications because of their availability and bio-renewabi lignocellulosic materials, especially from agricultural and forestry se reduce the over dependence on petrochemical resources while provide waste management alternative. The cutting-edge industrial utilization lignocellulosic biomass described in this lesson suggests its major ro	les, nensodu unct and carl ial lose are ity lity cto ling n of	man sive ctio ion app bon indu for dis for . Us rs c	ny n ly n, al c llica ustr er, cus nov sing oule	arbon ations ial sed in rel g d help ainable


a circular bioeconomy that consists of innovative design and advanced production methods to facilitate industrial recovery and reuse of waste materials beyond biofuel and biochemical production.

SKM 840	Microwave pyrolysis3038
Purpose and Content	This lesson aims to a state-of-the-art technique regarding the MAP of biomass. The sections from Fundamentals of microwave irradiation to Catalysts for catalytic microwave-assisted pyrolysis are specically given. Owing to the key features of MAP (e.g. rapid volumetric heating, easy control, and energy saving), MAP has as the more effective pathway to valorize biomass than conventional pyrolysis. It is also noticed that the MAP technology is a well established one that can be used to enhance pyrolysis for target products. Several types of catalysts including metal oxides and zeolite-based catalysts have been most commonly employed during the CMAP of biomass, signicantly affecting the product yields, distributions, and even qualities. The increasing demand for renewable fuels and chemicals necessitates the exploration of alternative sources to replace petroleum sources. Biomass has been viewed as the most promising source to produce sustainable fuels and chemicals. Underpinning the key advantages of microwave heating (e.g., rapid and controlled heating, energy saving, and no requirement for agitation or fluidization), microwave-assisted pyrolysis (MAP) is one of the most attractive techniques for the valorization of biomass, which are more amenable to produce three high quality products: bio-oil, gas, and bio char. In this respect, this lesson reviews the biomass pyrolysis using microwave irradiation, types of microwave absorbers, and chemistry of non-catalytic MAP and catalysts. Recent progress in the experimental studies on both non-catalytic MAP and catalytic MAP of biomass is also demostrated with emphasis on the bio-oil yield and quality. Additionally, reaction kinetics and future prospects in the light of current studies are also given in this lessonç. Consequently, thislesson illustrates both the highlights of significant achievements from biomass pyrolysis using microwave irradiation and the milestones that are necessary to be obtained in the future.

SKM 842	Microwave Soil Remediation	3	0	3	8
	The lesson aims to microwave soil remediation applications . Micro	wav	ve (1	MW	/)
	heating has been identified as a potential tool for contaminated soil a	nd g	gro	und	water
Purpose	remediation due to several advantages such as simplicity, safety, flexibility, short			ort	
and	treatment times and low risk. Within the scope of this course, the the	oret	ica	1	
Content	background and related techno-economic features of MW heating wi	ll b	e ta	ugh	ıt.
	Theoretical background on soil remediation by microwave heating, i	nflu	enc	ing	
	factors, comparison with other remediation methods.				

SKM843	Advanced Biological Nutrient Removal3038
Purpose and Content	By the end of this course, participants will understand the appropriate microbiological processes for nitrogen and phosphorus removal, biological nutrient removal (BNG) in activated sludge treatment, oxidation ponds, and the design and operating criteria of integrated fixed film/activated sludge systems. This course explains the sources of nutrients in drinking water and discusses new technologies for biological nutrient removal.

SKM816Obtaining Valuable Products from Wastes3038

Purpose	The main objective of this course is to give general information about obtaining valuable products from wastes.
and Content	Course Content:What is waste, types of waste, harms of waste, waste disposal methods, waste biomass, conversion of waste biomass

4